The Category Theoretic Understanding of Universal Algebra: Lawvere Theories and Monads
نویسندگان
چکیده
Lawvere theories and monads have been the two main category theoretic formulations of universal algebra, Lawvere theories arising in 1963 and the connection with monads being established a few years later. Monads, although mathematically the less direct and less malleable formulation, rapidly gained precedence. A generation later, the definition of monad began to appear extensively in theoretical computer science in order to model computational effects, without reference to universal algebra. But since then, the relevance of universal algebra to computational effects has been recognised, leading to renewed prominence of the notion of Lawvere theory, now in a computational setting. This development has formed a major part of Gordon Plotkin’s mature work, and we study its history here, in particular asking why Lawvere theories were eclipsed by monads in the 1960’s, and how the renewed interest in them in a computer science setting might develop in future.
منابع مشابه
Category Theoretic Understandings of Universal Algebra and its Dual: Monads and Lawvere Theories, Comonads and What?
Universal algebra is often known within computer science in the guise of algebraic specification or equational logic. In 1963, it was given a category theoretic characterisation in terms of what are now called Lawvere theories. Unlike operations and equations, a Lawvere theory is uniquely determined by its category of models. Except for a caveat about nullary operations, the notion of Lawvere t...
متن کاملElectronic Notes in Theoretical Computer Science Mathematical Foundations of Programming Semantics
Universal algebra is often known within computer science in the guise of algebraic specification or equational logic. In 1963, it was given a category theoretic characterisation in terms of what are now called Lawvere theories. Unlike operations and equations, a Lawvere theory is uniquely determined by its category of models. Except for a caveat about nullary operations, the notion of Lawvere t...
متن کاملSegal Condition Meets Computational Effects
Every finitary monad T on the category of sets is described by an algebraic theory whose n-ary operations are the elements of the free algebra Tn generated by n letters. This canonical presentation of the monad (called its Lawvere theory) offers a precious guideline in the search for an intuitive presentation of the monad by generators and relations. Hence, much work has been devoted to extend ...
متن کاملEnriched algebraic theories and monads for a system of arities
Under a minimum of assumptions, we develop in generality the basic theory of universal algebra in a symmetric monoidal closed category V with respect to a specified system of arities j : J ↪→ V . Lawvere’s notion of algebraic theory generalizes to this context, resulting in the notion of single-sorted V -enriched J -cotensor theory, or J -theory for short. For suitable choices of V and J , such...
متن کاملNotions of Lawvere Theory
Categorical universal algebra can be developed either using Lawvere theories (single-sorted finite product theories) or using monads, and the category of Lawvere theories is equivalent to the category of finitary monads on Set. We show how this equivalence, and the basic results of universal algebra, can be generalized in three ways: replacing Set by another category, working in an enriched set...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. Notes Theor. Comput. Sci.
دوره 172 شماره
صفحات -
تاریخ انتشار 2007